Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Woody tissue photosynthesis reduces stem CO2 efflux by half and remains unaffected by drought stress in young Populus tremula trees.

Identifieur interne : 000017 ( Main/Exploration ); précédent : 000016; suivant : 000018

Woody tissue photosynthesis reduces stem CO2 efflux by half and remains unaffected by drought stress in young Populus tremula trees.

Auteurs : Linus De Roo [Belgique] ; Roberto Luis Salom N [Belgique] ; Kathy Steppe [Belgique]

Source :

RBID : pubmed:31884680

Abstract

A substantial portion of locally respired CO2 in stems can be assimilated by chloroplast-containing tissues. Woody tissue photosynthesis (Pwt ) therefore plays a major role in the stem carbon balance. To study the impact of Pwt on stem carbon cycling along a gradient of water availability, stem CO2 efflux (EA ), xylem CO2 concentration ([CO2 ]), and xylem water potential (Ψxylem ) were measured in 4-year-old Populus tremula L. trees exposed to drought stress and different regimes of light exclusion of woody tissues. Under well-watered conditions, local Pwt decreased EA up to 30%. Axial CO2 diffusion (Dax ) induced by distant Pwt caused an additional decrease in EA of up to 25% and limited xylem [CO2 ] build-up. Under drought stress, absolute decreases in EA driven by Pwt remained stable, denoting that Pwt was not affected by drought. At the end of the dry period, when transpiration was low, local Pwt and Dax offset 20% and 10% of stem respiration on a daily basis, respectively. These results highlight (a) the importance of Pwt for an adequate interpretation of EA measurements and (b) homeostatic Pwt along a drought stress gradient, which might play a crucial role to fuel stem metabolism when leaf carbon uptake and phloem transport are limited.

DOI: 10.1111/pce.13711
PubMed: 31884680


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Woody tissue photosynthesis reduces stem CO
<sub>2</sub>
efflux by half and remains unaffected by drought stress in young Populus tremula trees.</title>
<author>
<name sortKey="De Roo, Linus" sort="De Roo, Linus" uniqKey="De Roo L" first="Linus" last="De Roo">Linus De Roo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Salom N, Roberto Luis" sort="Salom N, Roberto Luis" uniqKey="Salom N R" first="Roberto Luis" last="Salom N">Roberto Luis Salom N</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31884680</idno>
<idno type="pmid">31884680</idno>
<idno type="doi">10.1111/pce.13711</idno>
<idno type="wicri:Area/Main/Corpus">000541</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000541</idno>
<idno type="wicri:Area/Main/Curation">000541</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000541</idno>
<idno type="wicri:Area/Main/Exploration">000541</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Woody tissue photosynthesis reduces stem CO
<sub>2</sub>
efflux by half and remains unaffected by drought stress in young Populus tremula trees.</title>
<author>
<name sortKey="De Roo, Linus" sort="De Roo, Linus" uniqKey="De Roo L" first="Linus" last="De Roo">Linus De Roo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Salom N, Roberto Luis" sort="Salom N, Roberto Luis" uniqKey="Salom N R" first="Roberto Luis" last="Salom N">Roberto Luis Salom N</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A substantial portion of locally respired CO
<sub>2</sub>
in stems can be assimilated by chloroplast-containing tissues. Woody tissue photosynthesis (P
<sub>wt</sub>
) therefore plays a major role in the stem carbon balance. To study the impact of P
<sub>wt</sub>
on stem carbon cycling along a gradient of water availability, stem CO
<sub>2</sub>
efflux (E
<sub>A</sub>
), xylem CO
<sub>2</sub>
concentration ([CO
<sub>2</sub>
]), and xylem water potential (Ψ
<sub>xylem</sub>
) were measured in 4-year-old Populus tremula L. trees exposed to drought stress and different regimes of light exclusion of woody tissues. Under well-watered conditions, local P
<sub>wt</sub>
decreased E
<sub>A</sub>
up to 30%. Axial CO
<sub>2</sub>
diffusion (D
<sub>ax</sub>
) induced by distant P
<sub>wt</sub>
caused an additional decrease in E
<sub>A</sub>
of up to 25% and limited xylem [CO
<sub>2</sub>
] build-up. Under drought stress, absolute decreases in E
<sub>A</sub>
driven by P
<sub>wt</sub>
remained stable, denoting that P
<sub>wt</sub>
was not affected by drought. At the end of the dry period, when transpiration was low, local P
<sub>wt</sub>
and D
<sub>ax</sub>
offset 20% and 10% of stem respiration on a daily basis, respectively. These results highlight (a) the importance of P
<sub>wt</sub>
for an adequate interpretation of E
<sub>A</sub>
measurements and (b) homeostatic P
<sub>wt</sub>
along a drought stress gradient, which might play a crucial role to fuel stem metabolism when leaf carbon uptake and phloem transport are limited.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31884680</PMID>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Woody tissue photosynthesis reduces stem CO
<sub>2</sub>
efflux by half and remains unaffected by drought stress in young Populus tremula trees.</ArticleTitle>
<Pagination>
<MedlinePgn>981-991</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13711</ELocationID>
<Abstract>
<AbstractText>A substantial portion of locally respired CO
<sub>2</sub>
in stems can be assimilated by chloroplast-containing tissues. Woody tissue photosynthesis (P
<sub>wt</sub>
) therefore plays a major role in the stem carbon balance. To study the impact of P
<sub>wt</sub>
on stem carbon cycling along a gradient of water availability, stem CO
<sub>2</sub>
efflux (E
<sub>A</sub>
), xylem CO
<sub>2</sub>
concentration ([CO
<sub>2</sub>
]), and xylem water potential (Ψ
<sub>xylem</sub>
) were measured in 4-year-old Populus tremula L. trees exposed to drought stress and different regimes of light exclusion of woody tissues. Under well-watered conditions, local P
<sub>wt</sub>
decreased E
<sub>A</sub>
up to 30%. Axial CO
<sub>2</sub>
diffusion (D
<sub>ax</sub>
) induced by distant P
<sub>wt</sub>
caused an additional decrease in E
<sub>A</sub>
of up to 25% and limited xylem [CO
<sub>2</sub>
] build-up. Under drought stress, absolute decreases in E
<sub>A</sub>
driven by P
<sub>wt</sub>
remained stable, denoting that P
<sub>wt</sub>
was not affected by drought. At the end of the dry period, when transpiration was low, local P
<sub>wt</sub>
and D
<sub>ax</sub>
offset 20% and 10% of stem respiration on a daily basis, respectively. These results highlight (a) the importance of P
<sub>wt</sub>
for an adequate interpretation of E
<sub>A</sub>
measurements and (b) homeostatic P
<sub>wt</sub>
along a drought stress gradient, which might play a crucial role to fuel stem metabolism when leaf carbon uptake and phloem transport are limited.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Roo</LastName>
<ForeName>Linus</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-3627-1406</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salomón</LastName>
<ForeName>Roberto Luis</ForeName>
<Initials>RL</Initials>
<Identifier Source="ORCID">0000-0003-2674-1731</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steppe</LastName>
<ForeName>Kathy</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus tremula L. (aspen)</Keyword>
<Keyword MajorTopicYN="Y">Q10</Keyword>
<Keyword MajorTopicYN="Y">carbon balance</Keyword>
<Keyword MajorTopicYN="Y">stem recycling photosynthesis</Keyword>
<Keyword MajorTopicYN="Y">xylem CO2 concentration ([CO2])</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31884680</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13711</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Amthor, J. S. (2000). The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany, 86(1), 1-20. https://doi.org/10.1006/anbo.2000.1175</Citation>
</Reference>
<Reference>
<Citation>Angert, A., Muhr, J., Negron Juarez, R., Alegria Muñoz, W., Kraemer, G., Ramirez Santillan, J., … Trumbore, S. E. (2012). Internal respiration of Amazon tree stems greatly exceeds external CO2 efflux. Biogeosciences, 9(12), 4979-4991. https://doi.org/10.5194/bg-9-4979-2012</Citation>
</Reference>
<Reference>
<Citation>Aschan, G., Wittmann, C., & Pfanz, H. (2001). Age-dependent bark photosynthesis of aspen twigs. Trees, 15(7), 431-437. https://doi.org/10.1007/s004680100120</Citation>
</Reference>
<Reference>
<Citation>Atkin, O. K., & Macherel, D. (2008). The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany, 103(4), 581-597. https://doi.org/10.1093/aob/mcn094</Citation>
</Reference>
<Reference>
<Citation>Atkin, O. K., & Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8(7), 343-351. https://doi.org/10.1016/S1360-1385(03)00136-5</Citation>
</Reference>
<Reference>
<Citation>Ávila, E., Herrera, A., & Tezara, W. (2014). Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica, 52(1), 3-15. https://doi.org/10.1007/s11099-014-0004-2</Citation>
</Reference>
<Reference>
<Citation>Begg, J. E., & Turner, N. C. (1970). Water potential gradients in field tobacco. Plant Physiology, 46(2), 343-346. https://doi.org/10.1104/pp.46.2.343</Citation>
</Reference>
<Reference>
<Citation>Berveiller, D., Kierzkowski, D., & Damesin, C. (2007). Interspecific variability of stem photosynthesis among tree species. Tree Physiology, 27(1), 53-61. https://doi.org/10.1093/treephys/27.1.53</Citation>
</Reference>
<Reference>
<Citation>Bloemen, J., McGuire, M. A., Aubrey, D. P., Teskey, R. O., & Steppe, K. (2013). Internal recycling of respired CO2 may be important for plant functioning under changing climate regimes. Plant Signaling and Behavior, 8(12), e27530. https://doi.org/10.4161/psb.27530</Citation>
</Reference>
<Reference>
<Citation>Bloemen, J., Vergeynst, L. L., Overlaet-Michiels, L., & Steppe, K. (2016). How important is woody tissue photosynthesis in poplar during drought stress? Trees - Structure and Function, 30(1), 63-72. https://doi.org/10.1007/s00468-014-1132-9</Citation>
</Reference>
<Reference>
<Citation>Bowman, W. P., Barbour, M. M., Turnbull, M. H., Tissue, D. T., Whitehead, D., & Griffin, K. L. (2005). Sap flow rates and sapwood density are critical factors in within- and between-tree variation in CO2 efflux from stems of mature Dacrydium cupressinum trees. New Phytologist, 167(3), 815-828. https://doi.org/10.1111/j.1469-8137.2005.01478.x</Citation>
</Reference>
<Reference>
<Citation>Cernusak, L. A., & Cheesman, A. W. (2015). The benefits of recycling: How photosynthetic bark can increase drought tolerance. New Phytologist, 208(4), 995-997. https://doi.org/10.1111/nph.13723</Citation>
</Reference>
<Reference>
<Citation>Cernusak, L. A., & Hutley, L. B. (2011). Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of Eucalyptus miniata. Plant Physiology, 155(1), 515-523. https://doi.org/10.1104/pp.110.163337</Citation>
</Reference>
<Reference>
<Citation>Cernusak, L. A., & Marshall, J. D. (2000). Photosynthetic refixation in branches of Western White Pine. Functional Ecology, 14(3), 300-311. https://doi.org/10.1046/j.1365-2435.2000.00436.x</Citation>
</Reference>
<Reference>
<Citation>Dannoura, M., Kominami, Y., Tamai, K., Jomura, M., Miyama, T., Goto, Y., & Kanazawa, Y. (2006). Development of an automatic chamber system for long-term measurements of CO2 flux from roots. Tellus, Series B: Chemical and Physical Meteorology, 58(5), 502-512. https://doi.org/10.1111/j.1600-0889.2006.00216.x</Citation>
</Reference>
<Reference>
<Citation>Darenova, E., Acosta, M., Pokorny, R., & Pavelka, M. (2018). Variability in temperature dependence of stem CO2 efflux from Norway spruce trees. Tree Physiology, 38(9), 1333-1344. https://doi.org/10.1093/treephys/tpy006</Citation>
</Reference>
<Reference>
<Citation>Darenova, E., Szatniewska, J., Acosta, M., & Pavelka, M. (2018). Variability of stem CO2 efflux response to temperature over the diel period. Tree Physiology, 2001, 1-11. https://doi.org/10.1093/treephys/tpy134</Citation>
</Reference>
<Reference>
<Citation>De Baerdemaeker, N. J. F., Salomón, R. L., De Roo, L., & Steppe, K. (2017). Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation. The New Phytologist, 216(3), 720-727. https://doi.org/10.1111/nph.14787</Citation>
</Reference>
<Reference>
<Citation>De Roo, L., Bloemen, J., Dupon, Y., Salomón, R. L., & Steppe, K. (2019). Axial diffusion of respired CO2 confounds stem respiration estimates during the dormant season. Annals of Forest Science, 76(52). https://doi.org/10.1007/s13595-019-0839-6</Citation>
</Reference>
<Reference>
<Citation>De Roo, L., Salomón, R. L., Oleksyn, J., & Steppe, K. (n.d.). Woody tissue photosynthesis delays drought stress in Populus tremula trees by replenishing starch reserves in branch xylem tissues and limiting embolism. Under Review.</Citation>
</Reference>
<Reference>
<Citation>Drake, J. E., Tjoelker, M. G., Vårhammar, A., Medlyn, B. E., Reich, P. B., Leigh, A., … Barton, C. V. M. (2018). Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology., 24, 2390-2402. https://doi.org/10.1111/gcb.14037</Citation>
</Reference>
<Reference>
<Citation>Flexas, J., Bota, J., Galmés, J., Medrano, H., & Ribas-Carbó, M. (2006, July). Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiologia Plantarum, 127, 343-352. https://doi.org/10.1111/j.1399-3054.2006.00621.x</Citation>
</Reference>
<Reference>
<Citation>Hilman, B., Muhr, J., Trumbore, S. E., Kunert, N., Carbone, M. S., Yuval, P., … Angert, A. (2019). Comparison of CO2 and O2 fluxes demonstrate retention of respired CO2 in tree stems from a range of tree species. Biogeosciences, 16(1), 177-191. https://doi.org/10.5194/bg-16-177-2019</Citation>
</Reference>
<Reference>
<Citation>Hölttä, T., & Kolari, P. (2009). Interpretation of stem CO2 efflux measurements. Tree Physiology, 29(11), 1447-1456. https://doi.org/10.1093/treephys/tpp073</Citation>
</Reference>
<Reference>
<Citation>Hubeau, M., Mincke, J., Vanhove, C., Courtyn, J., Vandenberghe, S., & Steppe, K. (2019). Plant-PET to investigate phloem vulnerability to drought in Populus tremula under changing climate regimes. Tree Physiology, 39(2), 211-221. https://doi.org/10.1093/treephys/tpy131</Citation>
</Reference>
<Reference>
<Citation>Kharouk, V. I., Middleton, E. M., Spencer, S. L., Rock, B. N., & Williams, D. L. (1995). Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem. Water, Air, and Soil Pollution, 82(1), 483-497. https://doi.org/10.1007/BF01182858</Citation>
</Reference>
<Reference>
<Citation>Liu, J., Gu, L., Yu, Y., Huang, P., Wu, Z., Zhang, Q., … Sun, Z. (2019). Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana. Plant, Cell & Environment, 42, 2584-2596. https://doi.org/10.1111/pce.13578</Citation>
</Reference>
<Reference>
<Citation>Long, S. P., & Hällgren, J.-E. (1993). Measurement of CO2 assimilation by plants in the field and the laboratory. In D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, & S. P. Long (Eds.), Photosynthesis and production in a changing environment: A field and laboratory manual (pp. 129-167). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-1566-7_9</Citation>
</Reference>
<Reference>
<Citation>McGuire, M. A., & Teskey, R. O. (2004). Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO2. Tree Physiology, 24(5), 571-578. https://doi.org/10.1093/treephys/24.5.571</Citation>
</Reference>
<Reference>
<Citation>Metcalfe, D. B., Meir, P., Aragão, L. E. O. C., Lobo-do-Vale, R., Galbraith, D., Fisher, R. A., … Williams, M. (2010). Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytologist, 187(3), 608-621. https://doi.org/10.1111/j.1469-8137.2010.03319.x</Citation>
</Reference>
<Reference>
<Citation>Mitchell, P. J., O'Grady, A. P., Tissue, D. T., White, D. A., Ottenschlaeger, M. L., & Pinkard, E. A. (2013). Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 197(3), 862-872. https://doi.org/10.1111/nph.12064</Citation>
</Reference>
<Reference>
<Citation>Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4(2), 61-64. https://doi.org/10.20982/tqmp.04.2.p061</Citation>
</Reference>
<Reference>
<Citation>Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x</Citation>
</Reference>
<Reference>
<Citation>Nilsen, E. T. (1992). The influence of water stress on leaf and stem photosynthesis in Spartium junceum L. Plant, Cell & Environment, 15(4), 455-461. https://doi.org/10.1111/j.1365-3040.1992.tb00996.x</Citation>
</Reference>
<Reference>
<Citation>Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C., & Loose, M. (2002). Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften, 89(4), 147-162. https://doi.org/10.1007/s00114-002-0309-z</Citation>
</Reference>
<Reference>
<Citation>R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing Retrieved from https://www.r-project.org/</Citation>
</Reference>
<Reference>
<Citation>Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J. M., Rambal, S., Dore, S., & Valentini, R. (2002). Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics. Functional Ecology, 16(1), 27-39. https://doi.org/10.1046/j.0269-8463.2001.00597.x</Citation>
</Reference>
<Reference>
<Citation>Rodríguez-Calcerrada, J., Martin-StPaul, N. K., Lempereur, M., Ourcival, J.-M., del Carmen del Rey, M., Joffre, R., & Rambal, S. (2014). Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand. Agricultural and Forest Meteorology, 195-196, 61-72 https://doi.org/10.1016/j.agrformet.2014.04.012</Citation>
</Reference>
<Reference>
<Citation>Rowland, L., da Costa, A. C. L., Oliveira, A. A. R., Oliveira, R. S., Bittencourt, P. L., Costa, P. B., … Meir, P. (2018). Drought stress and tree size determine stem CO2 efflux in a tropical forest. New Phytologist, 218(4), 1393-1405. https://doi.org/10.1111/nph.15024</Citation>
</Reference>
<Reference>
<Citation>Salomón, R. L., De Roo, L., Bodé, S., Boeckx, P., & Steppe, K. (2019). Isotope ratio laser spectroscopy to disentangle xylem-transported from locally respired CO2 in stem CO2 efflux. Tree Physiology, 39(5), 819-830. https://doi.org/10.1093/treephys/tpy152</Citation>
</Reference>
<Reference>
<Citation>Salomón, R. L., De Roo, L., Oleksyn, J., De Pauw, D. J. W., & Steppe, K. (2019). TReSpire-A biophysical TRee Stem respiration model. New Phytologist. https://doi.org/10.1111/nph.16174</Citation>
</Reference>
<Reference>
<Citation>Salomón, R. L., De Schepper, V., Valbuena-Carabaña, M., Gil, L., & Steppe, K. (2018). Daytime depression in temperature-normalised stem CO2 efflux in young poplar trees is dominated by low turgor pressure rather than by internal transport of respired CO2. New Phytologist, 217(2), 586-598. https://doi.org/10.1111/nph.14831</Citation>
</Reference>
<Reference>
<Citation>Salomón, R. L., Valbuena-Carabaña, M., Gil, L., McGuire, M. A., Teskey, R. O., Aubrey, D. P., … Rodríguez-Calcerrada, J. (2016). Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak. Tree Physiology, 36(11), 1409-1421. https://doi.org/10.1093/treephys/tpw029</Citation>
</Reference>
<Reference>
<Citation>Saveyn, A., Steppe, K., & Lemeur, R. (2007). Drought and the diurnal patterns of stem CO2 efflux and xylem CO2 concentration in young oak (Quercus robur). Tree Physiology, 27(3), 365-374. https://doi.org/10.1093/treephys/27.3.365</Citation>
</Reference>
<Reference>
<Citation>Saveyn, A., Steppe, K., & Lemeur, R. (2008). Report on non-temperature related variations in CO2 efflux rates from young tree stems in the dormant season. Trees, 22(2), 165-174. https://doi.org/10.1007/s00468-006-0099-6</Citation>
</Reference>
<Reference>
<Citation>Saveyn, A., Steppe, K., Ubierna, N., & Dawson, T. E. (2010). Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant, Cell and Environment, 33(11), 1949-1958. https://doi.org/10.1111/j.1365-3040.2010.02197.x</Citation>
</Reference>
<Reference>
<Citation>Schmitz, N., Egerton, J. J. G., Lovelock, C. E., & Ball, M. C. (2012). Light-dependent maintenance of hydraulic function in mangrove branches: Do xylary chloroplasts play a role in embolism repair? New Phytologist, 195(1), 40-46. https://doi.org/10.1111/j.1469-8137.2012.04187.x</Citation>
</Reference>
<Reference>
<Citation>Secchi, F., & Zwieniecki, M. A. (2012). Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: Chemistry of refilling. Plant Physiology, 160(2), 955-964. https://doi.org/10.1104/pp.112.200824</Citation>
</Reference>
<Reference>
<Citation>Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R., & Pockman, W. T. (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell and Environment, 37(1), 153-161. https://doi.org/10.1111/pce.12141</Citation>
</Reference>
<Reference>
<Citation>Smith, N. G. (2017). Plant respiration responses to elevated CO2: An overview from cellular processes to global impacts. In G. Tcherkez & J. Ghashghaie (Eds.), Plant respiration: Metabolic fluxes and carbon balance (pp. 69-87). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-68703-2_4</Citation>
</Reference>
<Reference>
<Citation>Steppe, K., Saveyn, A., McGuire, M. A., Lemeur, R., & Teskey, R. O. (2007). Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems. Functional Plant Biology, 34(9), 785. https://doi.org/10.1071/fp07077</Citation>
</Reference>
<Reference>
<Citation>Steppe, K., Sterck, F., & Deslauriers, A. (2015). Diel growth dynamics in tree stems: Linking anatomy and ecophysiology. Trends in Plant Science, 20(6), 1-9. https://doi.org/10.1016/j.tplants.2015.03.015</Citation>
</Reference>
<Reference>
<Citation>Stockfors, J. (2000). Temperature variations and distribution of living cells within tree stems: Implications for stem respiration modeling and scale-up. Tree Physiology, 20(15), 1057-1062. https://doi.org/10.1093/treephys/20.15.1057</Citation>
</Reference>
<Reference>
<Citation>Tarvainen, L., Wallin, G., Lim, H., Linder, S., Oren, R., Löfvenius, M. O., … Marshall, J. (2018). Photosynthetic refixation varies along the stem and reduces CO2 efflux in mature boreal Pinus sylvestris trees. Tree Physiology, 38(4), 558-569. https://doi.org/10.1093/treephys/tpx130</Citation>
</Reference>
<Reference>
<Citation>Teskey, R. O., & McGuire, M. A. (2007). Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO2 and possible transport of CO2 from roots. Plant, Cell and Environment, 30(5), 570-579. https://doi.org/10.1111/j.1365-3040.2007.01649.x</Citation>
</Reference>
<Reference>
<Citation>Teskey, R. O., McGuire, M. A., Bloemen, J., Aubrey, D. P., & Steppe, K. (2017). Respiration and CO2 fluxes in trees. In G. Tcherkez & J. Ghashghaie (Eds.), Plant respiration: Metabolic fluxes and carbon balance (pp. 181-207). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-68703-2_9</Citation>
</Reference>
<Reference>
<Citation>Teskey, R. O., Saveyn, A., Steppe, K., & McGuire, M. A. (2008). Origin, fate and significance of CO2 in tree stems. New Phytologist, 177(1), 17-32. https://doi.org/10.1111/j.1469-8137.2007.02286.x</Citation>
</Reference>
<Reference>
<Citation>Trumbore, S. E., Angert, A., Kunert, N., Muhr, J., & Chambers, J. Q. (2013). What's the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes. New Phytologist, 197(2), 353-355. https://doi.org/10.1111/nph.12065</Citation>
</Reference>
<Reference>
<Citation>Vandegehuchte, M. W., Bloemen, J., Vergeynst, L. L., & Steppe, K. (2015). Woody tissue photosynthesis in trees: Salve on the wounds of drought? In Woody tissue photosynthesis in trees: Salve on the wounds of drought? New Phytologist, 208(4), 998-1002. https://doi.org/10.1111/nph.13599</Citation>
</Reference>
<Reference>
<Citation>Wang, W., Wang, H., Zu, Y., Li, X., & Koike, T. (2006). Characteristics of the temperature coefficient, Q10, for the respiration of non-photosynthetic organs and soils of forest ecosystems. Frontiers of Forestry in China, 1(2), 125-135. https://doi.org/10.1007/s11461-006-0018-4</Citation>
</Reference>
<Reference>
<Citation>Wittmann, C., Aschan, G., & Pfanz, H. (2001). Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic and Applied Ecology, 2(2), 145-154. https://doi.org/10.1078/1439-1791-00047</Citation>
</Reference>
<Reference>
<Citation>Wittmann, C., & Pfanz, H. (2008). General trait relationships in stems: A study on the performance and interrelationships of several functional and structural parameters involved in corticular photosynthesis. Physiologia Plantarum, 134(4), 636-648. https://doi.org/10.1111/j.1399-3054.2008.01165.x</Citation>
</Reference>
<Reference>
<Citation>Wittmann, C., & Pfanz, H. (2018). More than just CO2-recycling: Corticular photosynthesis as a mechanism to reduce the risk of an energy crisis induced by low oxygen. New Phytologist, 219(2), 551-564. https://doi.org/10.1111/nph.15198</Citation>
</Reference>
<Reference>
<Citation>Zvereva, E. L., & Kozlov, M. V. (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: A metaanalysis. Global Change Biology, 12(1), 27-41. https://doi.org/10.1111/j.1365-2486.2005.01086.x</Citation>
</Reference>
<Reference>
<Citation>Zwieniecki, M. A., & Holbrook, N. M. (2009). Confronting Maxwell's demon: Biophysics of xylem embolism repair. Trends in Plant Science, 14(10), 530-534. https://doi.org/10.1016/j.tplants.2009.07.002</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
<region>
<li>Province de Flandre-Orientale</li>
<li>Région flamande</li>
</region>
<settlement>
<li>Gand</li>
</settlement>
<orgName>
<li>Université de Gand</li>
</orgName>
</list>
<tree>
<country name="Belgique">
<region name="Région flamande">
<name sortKey="De Roo, Linus" sort="De Roo, Linus" uniqKey="De Roo L" first="Linus" last="De Roo">Linus De Roo</name>
</region>
<name sortKey="Salom N, Roberto Luis" sort="Salom N, Roberto Luis" uniqKey="Salom N R" first="Roberto Luis" last="Salom N">Roberto Luis Salom N</name>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000017 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000017 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31884680
   |texte=   Woody tissue photosynthesis reduces stem CO2 efflux by half and remains unaffected by drought stress in young Populus tremula trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31884680" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020